/*----------------------------------------------------------------------------*- =================================== Y Sever Includes - Binary Tree Core =================================== Description: Provides functions to generate balanced binary search trees for efficient searching of large arrays by value. Left branch is less than, right branch is greater than or equal to for multiple matching values. Legal: Version: MPL 1.1 The contents of this file are subject to the Mozilla Public License Version 1.1 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.mozilla.org/MPL/ Software distributed under the License is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License for the specific language governing rights and limitations under the License. The Original Code is the SA:MP script information include. The Initial Developer of the Original Code is Alex "Y_Less" Cole. Portions created by the Initial Developer are Copyright (C) 2008 the Initial Developer. All Rights Reserved. Contributors: ZeeX, koolk Thanks: Peter, Cam - Support. ZeeX - Very productive conversations. koolk - IsPlayerinAreaEx code. TheAlpha - Danish translation. breadfish - German translation. Fireburn - Dutch translation. yom - French translation. 50p - Polish translation. Zamaroht - Spanish translation. Dracoblue, sintax, mabako, Xtreme, other coders - Producing other modes for me to strive to better. Pixels^ - Running XScripters where the idea was born. Matite - Pestering me to release it and using it. Very special thanks to: Thiadmer - PAWN. Kye/Kalcor - SA:MP. SA:MP Team past, present and future - SA:MP. Version: 0.1.3 Changelog: 12/08/07: Fixed a bug with empty trees. 14/04/07: Updated header documentation with more than changelog. 10/04/07: Added parents for easy deletion. Added node deletion code. 08/04/07: Added Bintree_Add() 24/03/07: First version. Functions: Public: - Core: Bintree_QSort - Custom implementaion of QSort to keep pointers. Bintree_SortHalf - Itteratively balances halves of an array. Stock: Bintree_Generate - Generates a balanced binary tree from given input. Bintree_Reset - Resets a position in a tree. Bintree_FindValue - Finds the pointer for a value in the tree. Bintree_Add - Adds an item to a generated tree. Bintree_Delete - Removes an item from a tree. Bintree_UpdatePointers - Updates the pointers after a target change. Static: Bintree_Compress - Removes space from an altered tree. Bintree_FindMin - Finds the smallest value on a branch. Bintree_FindMax - Finds the largest value on a branch. Inline: Bintree_Sort - Entry point for Bintree_QSort. Bintree_Fill - Entry point for Bintree_SortHalf. API: - Callbacks: - Definitions: BINTREE_NO_BRANCH - Nowhere to go from the number in required direction. BINTREE_NOT_FOUND - Failure return. Enums: E_BINTREE_TREE - Structure of a leaf of a binary tree. E_BINTREE_INPUT - Structure of an array of data to be added to a tree. Macros: - Tags: Bintree - Binary tree type. Variables: Global: - Static: - Commands: - Compile options: - Operators: - -*----------------------------------------------------------------------------*/ #include #define BINTREE_NO_BRANCH -1 #define BINTREE_NOT_FOUND -1 enum E_BINTREE_TREE { E_BINTREE_TREE_VALUE, E_BINTREE_TREE_LEFT, E_BINTREE_TREE_RIGHT, E_BINTREE_TREE_PARENT, E_BINTREE_TREE_POINTER } enum E_BINTREE_INPUT { E_BINTREE_INPUT_VALUE, E_BINTREE_INPUT_POINTER } //#define leafs<%1> %1][E_BINTREE_TREE //#define Bintree:%1[%2] Bintree:%1[%2][E_BINTREE_TREE] #define BinaryTree:%1<%2> Bintree:%1[%2][E_BINTREE_TREE] /*----------------------------------------------------------------------------*- Function: Bintree_Sort Params: input[][E_BINTREE_INPUT] - Data to sort. size - Size of data to sort. Return: - Notes: Entry point for Bintree_QSort. -*----------------------------------------------------------------------------*/ #define Bintree_Sort(%1,%2) \ Bintree_QSort((%1), 0, (%2) - 1) /*----------------------------------------------------------------------------*- Function: Bintree_Fill Params: BinaryTree:output<> - Destination for balanced tree. data[][E_BINTREE_INPUT] - Source data. size - Size of data. Return: Bintree_SortHalf. Notes: Entry point for Bintree_SortHalf. -*----------------------------------------------------------------------------*/ #define Bintree_Fill(%1,%2,%3) \ Bintree_SortHalf((%1), (%2), 0, (%3), 0, BINTREE_NO_BRANCH) /*----------------------------------------------------------------------------*- Function: Bintree_Generate Params: BinaryTree:output<> - Binary tree to store the data in. input[][E_BINTREE_INPUT] - Input data to get the data from. size - Number of items to sort. Return: - Notes: Just calls the sort and fill routines. -*----------------------------------------------------------------------------*/ stock Bintree_Generate(BinaryTree:output<>, input[][E_BINTREE_INPUT], size) { if (!size) { output[0][E_BINTREE_TREE_PARENT] = BINTREE_NO_BRANCH; output[0][E_BINTREE_TREE_LEFT] = BINTREE_NO_BRANCH; output[0][E_BINTREE_TREE_RIGHT] = BINTREE_NO_BRANCH; return 0; } Bintree_Sort(input, size); Bintree_Fill(output, input, size); return 1; } /*----------------------------------------------------------------------------*- Function: Bintree_Reset Params: BinaryTree:tree<> - Array to reset. pointer - Position to reset. Return: - Notes: Initialises the array for use. -*----------------------------------------------------------------------------*/ stock Bintree_Reset(BinaryTree:tree<>, pointer = 0) { tree[pointer][E_BINTREE_TREE_VALUE] = 0; tree[pointer][E_BINTREE_TREE_LEFT] = BINTREE_NO_BRANCH; tree[pointer][E_BINTREE_TREE_RIGHT] = BINTREE_NO_BRANCH; tree[pointer][E_BINTREE_TREE_PARENT] = BINTREE_NO_BRANCH; tree[pointer][E_BINTREE_TREE_POINTER] = BINTREE_NOT_FOUND; } /*----------------------------------------------------------------------------*- Function: Bintree_FindValue Params: BinaryTree:tree<> - Tree to find the data in. value - Value to search for. &cont - Start point. &old - The last real leaf. Return: - Notes: Itterates through the array following the various paths till it locates the value provided or reaches a dead end. If the current value is greater than the search value, the search goes left, otherwise right. If cont is not -1 the search will start from the data pointed to by the data pointed to by conts' right path, this is to allow collisions to be passed over if you want a subsequent one. -*----------------------------------------------------------------------------*/ stock Bintree_FindValue(BinaryTree:tree<>, value, &cont = 0, &old = 0) { new treeValue; while (cont != BINTREE_NO_BRANCH) { old = cont; treeValue = tree[old][E_BINTREE_TREE_VALUE]; if (value < treeValue) cont = tree[old][E_BINTREE_TREE_LEFT]; else { cont = tree[old][E_BINTREE_TREE_RIGHT]; if (value == treeValue) { return tree[old][E_BINTREE_TREE_POINTER]; } } } return BINTREE_NOT_FOUND; } /*----------------------------------------------------------------------------*- Function: Bintree_QSort Params: numbers[][E_BINTREE_INPUT] - Data to sort. left - Start index. right - End index. Return: - Notes: Custom version of QSort (see YSI_misc) allows for E_BINTREE_INPUT data types, preserving the relative pointers for the sorted data. -*----------------------------------------------------------------------------*/ Bintree_QSort(numbers[][E_BINTREE_INPUT], left, right) { new pivot = numbers[left][E_BINTREE_INPUT_VALUE], pointer = numbers[left][E_BINTREE_INPUT_POINTER], l_hold = left, r_hold = right; while (left < right) { while ((numbers[right][E_BINTREE_INPUT_VALUE] >= pivot) && (left < right)) right--; if (left != right) { numbers[left][E_BINTREE_INPUT_VALUE] = numbers[right][E_BINTREE_INPUT_VALUE]; numbers[left][E_BINTREE_INPUT_POINTER] = numbers[right][E_BINTREE_INPUT_POINTER]; left++; } while ((numbers[left][E_BINTREE_INPUT_VALUE] <= pivot) && (left < right)) left++; if (left != right) { numbers[right][E_BINTREE_INPUT_VALUE] = numbers[left][E_BINTREE_INPUT_VALUE]; numbers[right][E_BINTREE_INPUT_POINTER] = numbers[left][E_BINTREE_INPUT_POINTER]; right--; } } numbers[left][E_BINTREE_INPUT_VALUE] = pivot; numbers[left][E_BINTREE_INPUT_POINTER] = pointer; pivot = left; left = l_hold; right = r_hold; if (left < pivot) Bintree_QSort(numbers, left, pivot - 1); if (right > pivot) Bintree_QSort(numbers, pivot + 1, right); } /*----------------------------------------------------------------------------*- Function: Bintree_SortHalf Params: BinaryTree:output<> - Destination array. data[][E_BINTREE_INPUT] - Source array. index - Start index of the source for processing. upper - End index of the source for processing. offset - Current offset in the destination array for writing. Return: Size of balanced tree. Notes: Recursively calls itself. Bisects the passed array and passed each half back to itself, with the middle value of each half being the left and right branches of the middle value of the passed array (which isn't included in either bisected half). This is itterative so those are again split and again split. If the passed array is only one or two elements big the behaviour is set and hardcoded. Equal values SHOULD branch right, the code is designed for this however the generation is not fully tested (it mostly branches right but adjacent after bisecting values haven't been tested). Based on code written for PHP by me. -*----------------------------------------------------------------------------*/ Bintree_SortHalf(BinaryTree:output<>, data[][E_BINTREE_INPUT], index, upper, offset, parent) { new num = upper - index; if (!num) return offset; if (num == 1) { output[offset][E_BINTREE_TREE_VALUE] = data[index][E_BINTREE_INPUT_VALUE]; output[offset][E_BINTREE_TREE_POINTER] = data[index][E_BINTREE_INPUT_POINTER]; output[offset][E_BINTREE_TREE_PARENT] = parent; output[offset][E_BINTREE_TREE_LEFT] = BINTREE_NO_BRANCH; output[offset][E_BINTREE_TREE_RIGHT] = BINTREE_NO_BRANCH; } else if (num == 2) { output[offset][E_BINTREE_TREE_VALUE] = data[index][E_BINTREE_INPUT_VALUE]; output[offset][E_BINTREE_TREE_POINTER] = data[index][E_BINTREE_INPUT_POINTER]; output[offset][E_BINTREE_TREE_PARENT] = parent; output[offset][E_BINTREE_TREE_LEFT] = BINTREE_NO_BRANCH; output[offset][E_BINTREE_TREE_RIGHT] = ++offset; output[offset][E_BINTREE_TREE_VALUE] = data[++index][E_BINTREE_INPUT_VALUE]; output[offset][E_BINTREE_TREE_POINTER] = data[index][E_BINTREE_INPUT_POINTER]; output[offset][E_BINTREE_TREE_PARENT] = offset - 1; output[offset][E_BINTREE_TREE_LEFT] = BINTREE_NO_BRANCH; output[offset][E_BINTREE_TREE_RIGHT] = BINTREE_NO_BRANCH; } else { new half = num / 2, off = half + index, right; while (off && data[off][E_BINTREE_INPUT_VALUE] == data[off - 1][E_BINTREE_INPUT_VALUE]) off--; right = Bintree_SortHalf(output, data, index, off, offset + 1, offset); output[offset][E_BINTREE_TREE_VALUE] = data[off][E_BINTREE_INPUT_VALUE]; output[offset][E_BINTREE_TREE_POINTER] = data[off][E_BINTREE_INPUT_POINTER]; output[offset][E_BINTREE_TREE_PARENT] = parent; output[offset][E_BINTREE_TREE_LEFT] = offset + 1; output[offset][E_BINTREE_TREE_RIGHT] = right; return Bintree_SortHalf(output, data, off + 1, upper, right, offset); } return offset + 1; } /*----------------------------------------------------------------------------*- Function: Bintree_Add Params: BinaryTree:data<> - Array to add to. pointer - Pointer to add. value - Value to add. offset - Location in the array to store the data. maxsize - Size of data. Return: Next free location Notes: - native Bintree_Add(BinaryTree:tree<>, pointer, value, offset, maxsize = sizeof (data)); -*----------------------------------------------------------------------------*/ stock Bintree_Add(BinaryTree:data<>, pointer, value, offset, maxsize = sizeof (data)) { if (offset >= maxsize) return BINTREE_NOT_FOUND; if (offset) { new leaf, old; while (Bintree_FindValue(data, value, leaf, old) != BINTREE_NOT_FOUND) continue; //Bintree_Reset(data, offset); if (value < data[old][E_BINTREE_TREE_VALUE]) data[old][E_BINTREE_TREE_LEFT] = offset; else data[old][E_BINTREE_TREE_RIGHT] = offset; data[offset][E_BINTREE_TREE_PARENT] = old; data[offset][E_BINTREE_TREE_LEFT] = BINTREE_NO_BRANCH; data[offset][E_BINTREE_TREE_RIGHT] = BINTREE_NO_BRANCH; data[offset][E_BINTREE_TREE_VALUE] = value; data[offset][E_BINTREE_TREE_POINTER] = pointer; return offset + 1; } else { data[0][E_BINTREE_TREE_PARENT] = BINTREE_NO_BRANCH; data[0][E_BINTREE_TREE_LEFT] = BINTREE_NO_BRANCH; data[0][E_BINTREE_TREE_RIGHT] = BINTREE_NO_BRANCH; data[0][E_BINTREE_TREE_VALUE] = value; data[0][E_BINTREE_TREE_POINTER] = pointer; return 1; } } /*----------------------------------------------------------------------------*- Function: Bintree_Delete Params: BinaryTree:tree<> - Data. index - Index to remove. count - Number of binary tree items. Return: - Notes: The left branch is usually larger due to the division method used so we start there. Even though right is >= and left is only < in even sized arrays the greater chunk (unless there's only 2 items) goes left. Called itteratively to ensure branches are maintained. -*----------------------------------------------------------------------------*/ stock Bintree_Delete(BinaryTree:source<>, index, count) { new branch, old = index; while (TRUE) { if ((branch = source[old][E_BINTREE_TREE_LEFT]) != BINTREE_NO_BRANCH) branch = Bintree_FindMax(source, branch); else if ((branch = source[old][E_BINTREE_TREE_RIGHT]) != BINTREE_NO_BRANCH) branch = Bintree_FindMin(source, branch); else { if ((branch = source[old][E_BINTREE_TREE_PARENT]) != BINTREE_NO_BRANCH) { if (source[branch][E_BINTREE_TREE_LEFT] == old) source[branch][E_BINTREE_TREE_LEFT] = BINTREE_NO_BRANCH; else source[branch][E_BINTREE_TREE_RIGHT] = BINTREE_NO_BRANCH; } return Bintree_Compress(source, old, count); } new value = source[old][E_BINTREE_TREE_VALUE], pointer = source[old][E_BINTREE_TREE_POINTER]; source[old][E_BINTREE_TREE_VALUE] = source[branch][E_BINTREE_TREE_VALUE]; source[old][E_BINTREE_TREE_POINTER] = source[branch][E_BINTREE_TREE_POINTER]; source[branch][E_BINTREE_TREE_VALUE] = value; source[branch][E_BINTREE_TREE_POINTER] = pointer; old = branch; } return BINTREE_NO_BRANCH; } /*----------------------------------------------------------------------------*- Function: Bintree_Compress Params: BinaryTree:tree<> - Array to compress. index - Point to start at. count - Number of items total. Return: - Notes: - -*----------------------------------------------------------------------------*/ static stock Bintree_Compress(BinaryTree:data<>, index, count) { new index2 = index + 1; while (index < count) { new left = (data[index][E_BINTREE_TREE_LEFT] = data[index2][E_BINTREE_TREE_LEFT]), right = (data[index][E_BINTREE_TREE_RIGHT] = data[index2][E_BINTREE_TREE_RIGHT]), parent = (data[index][E_BINTREE_TREE_PARENT] = data[index2][E_BINTREE_TREE_PARENT]); data[index][E_BINTREE_TREE_VALUE] = data[index2][E_BINTREE_TREE_VALUE]; data[index][E_BINTREE_TREE_POINTER] = data[index2][E_BINTREE_TREE_POINTER]; if (left != BINTREE_NO_BRANCH) data[left][E_BINTREE_TREE_PARENT] = index; if (right != BINTREE_NO_BRANCH) data[right][E_BINTREE_TREE_PARENT] = index; if (parent != BINTREE_NO_BRANCH) { if (data[parent][E_BINTREE_TREE_LEFT] == index2) data[parent][E_BINTREE_TREE_LEFT] = index; else if (data[parent][E_BINTREE_TREE_RIGHT] == index2) data[parent][E_BINTREE_TREE_RIGHT] = index; } index++; index2++; } return count - 1; } /*----------------------------------------------------------------------------*- Function: Bintree_FindMin Params: BinaryTree:data<> - Array to search. offset - Start of branch to search. Return: - Notes: Finds the smallest value on a branch -*----------------------------------------------------------------------------*/ static stock Bintree_FindMin(BinaryTree:data<>, offset) { new branch; while ((branch = data[offset][E_BINTREE_TREE_LEFT]) != BINTREE_NO_BRANCH) offset = branch; return offset; } /*----------------------------------------------------------------------------*- Function: Bintree_FindMax Params: BinaryTree:data<> - Array to search. offset - Start of branch to search. Return: - Notes: Finds the largest value on a branch -*----------------------------------------------------------------------------*/ static stock Bintree_FindMax(BinaryTree:data<>, offset) { new branch; while ((branch = data[offset][E_BINTREE_TREE_RIGHT]) != BINTREE_NO_BRANCH) offset = branch; return offset; } /*----------------------------------------------------------------------------*- Function: Bintree_UpdatePointers Params: BinaryTree:data<> - Data to modify. offset - Pointer to modify values after. mod - Value to modify by. Return: - Notes: Used for updating pointers when the target data has been modifed (i.e. a value has been removed from the array and the array shifted). -*----------------------------------------------------------------------------*/ stock Bintree_UpdatePointers(BinaryTree:data<>, offset, size, mod = -1) { for (new i = 0; i < size; i++) { if (data[i][E_BINTREE_TREE_POINTER] > offset) data[i][E_BINTREE_TREE_POINTER] += mod; } }